CASE STUDY

AZZURO, INC. PO Box 27590 Scottsdale, AZ, 85255-0143 USA tel: +1.602.903.3918 email: info@azzuro.com

SPECIFICATIONS

Application: Biogas Emission from Oil Seed Extraction Plant in Antwerp, Belgium

Air flow: 160 m³/h, approx. 10,000 to 20,000 ppm H₂S

Contaminants: 5 g/m³ VOCs (hexane and pentane)

System configuration: 1 x Torrenta

Reactor material: HDPE

Media material: PermaPac

Year installed: 2001

AZZVRO

The Answer to economical H₂S removal out of biogas/ flare gas with concentrations of up to 20,000 ppmV

CASE STUDY: CARGILL, ANTWERP - BELGIUM

INTRODUCTION

A seed extraction production plant producing vegetable oil products emitted a gas containing several compounds like H_2S , hexane, and 2-methylpentane. The characteristics of the waste gas were quite extreme: Up to 16,300 ppm H_2S , 60 °C, and almost 0% oxygen. The waste gas was diluted in order to achieve biologically acceptable conditions. Since the regulations demanded a decreased emission level for H_2S a biological treatment system, the Torrenta bioreactor was applied.

Torrenta Bioreactor

The bioreactor operates with a combination of process water, fresh water and nutrients. The system is controlled by electro conductivity, which allows a minimum of water usage. *No other chemicals have to be added!*

H₂S REMOVAL

The amount of H₂S present in the waste gas depends on the type of seeds being processed:

The extraction of rapeseed results in much higher H_2S concentrations than extraction of soybeans. Most of the time processing of rapeseed occurred resulting in very high H_2S concentrations. The removal efficiencies for H_2S were over 98%.

Early 2002, the process switched between rapeseed and soybeans every two to three weeks.

CASE STUDY: CARGILL, ANTWERP - BELGIUM

Compound	Concentration - In mg/m3	Concentration - Out mg/m3	Removal Efficiency %
Hexane	107	40	63
2-Methylpentane	131	55	58
3-Methylpentane	66	26	61
Methylcyclopentane	23	8	65
Total VOC	327	129	60

Table 1: In and outlet concentrations and removal efficiencies for VOCs at 1,600 m^{3/}h and 1,800 ppm H₂S

VOC REMOVAL

VOCs of the extraction process were removed at an efficiency of 60% (table 1). This was higher than expected since the operational pH of the bioreactor was very low: pH 1.3. The VOCs at the given concentrations did not negatively affect the bacteria involved in H_2S oxidation since the removal efficiency was very high. Moreover, the Torrenta bioreactor contains micro-organisms that can degrade the VOC compounds of the extraction process.

CONCLUSION

The Torrenta bioreactor showed an excellent removal efficiency (> 98%) even at high and fluctuating H_2S concentrations: 200 - 1,800 ppm. The H_2S -oxidizing bacteria were not influenced by the presence of hexane and 2-methylpentane. These and similar compounds were biologically degraded to an extent of 60%.